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ABSTRACT 

The major problem addressed by this research is testing the actual implementation of 

a high speed networking transport protocol, SNR, written by two masters degree 

candidates, Wan and Mezhoud, to determine its adherence to a formal specification 

described by H. A. Tipici and G. M. Lundy. 

The approach taken was to modify the code to provide a program trace which included 

information about internal state variables and was designed to follow the specification's 

finite state machine description. The specification was used in conjunction with Testgen, a 

program written by C. Basaran, to generate a set of verification tests. A program was 

designed and implemented to provide a detailed analysis of the implementation, based on 

these two sets of data, to identify any deviations from the specification. 

The results of this work found machines T2, Rl and R2 perform the dequeuing of 

packets in unspecified states, and that R4 fails to check for an empty INBUF before 

finishing. The automated verification process enabled the detailed inspection of hundreds 

of lines of trace listings in seconds, providing information about which transitions were 

actually taken and error messages when failures to perform required actions occurred or 

predicate requirements were not met. 
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I. INTRODUCTION 

A. BACKGROUND 

Today, computer networking and networking issues and problems are a major area 

of interest in the field of computer science. Computers from desktop PCs to workstations 

and mainframes are being linked together in order to share resources from printers, to 

memory, to processor power. As the processing speed of these networked machines has 

increased, so has the requirement for intercommunication. Hardware designed to allow 

connectivity between separate machines has grown at an astounding rate with the advent of 

fiber optic cable and network standards such as FDDI and fast Ethernet. These new network 

standards, capable of data transfer rates greater than 100 million bits per second, have 

outstripped existing transport protocols. The problem of developing new transport 

protocols to better utilize the vast bandwidths available with these new standards has given 

rise to numerous designs from both the commercial and academic worlds. 

Protocol designs must first be described in a formal specification. The formal 

specification needs to allow for both a verification of the protocol and should be complete 

enough to translate directly into an actual implementation. 

One such answer to meeting the needs of high speed networks is the SNR transport 

protocol. Originally described in [1] and further refined in [10], this protocol is sufficiently 

well defined to be implemented. The nature of this work is to take an actual implementation 

and walk it against the formal specification to verify compliance. 

As with any piece of software, the correctness and viability of these new protocols 

must be carefully examined and tested. Testing must be done for the formal specification 

and for the implementation as well. A number of formal testing procedures for the 

specification of a networking protocol have been developed to include reachability 

analysis. Testing an implementation to ensure its conformance to the formal specification 

is another necessary requirement. The derivation of a set of finite state machines to 

incrementally examine and test the protocol must be done. Once the set of tests are 



developed, the process of applying the tests to an actual implementation may be 

undertaken. The generation of the test sequences must be carefully examined in order to 

preclude spurious results. The actual development of a testing program to examine the 

workings of the transport protocol implementation at work is the problem at hand. 

B. OBJECTIVE 

The objective of this thesis is to report the results of testing an implementation of 

the SNR protocol, written by F. Mezhoud [13] and W. J. Wan [12], to ensure its compliance 

with the formal specification. The implementations are the thesis work of two Naval 

Postgraduate School master's students and is run on an FDDI network consisting of two 

Sun Microsystems SPARCstationTM 10 running the SolarisTM 2.3 operating system. 

C. SCOPE, LIMITATIONS AND ASSUMPTIONS 

The scope of this work limited to designing a test program which will allow the user 

to examine the program traces generated by eight different SNR machines and compare it 

to a set of test sequences derived from the protocol specification. The goal is to determine 

if the implementation conforms to the specification. The SNR implementation code was 

augmented so state variable information is written to a file during run time. This program 

trace information is then compared with the formal specification in order to determine if 

the program is working in accordance with the design specification. This work serves only 

to test for compliance with specification. Each machine is tested separately and treated as 

a black box, that is, the inner workings of the machines are not examined, only the state of 

the global and local variables. This work is not intended to test if the specification contains 

errors or to evaluate the protocol's ability to provide service to the user. 

D.     ORGANIZATION OF THESIS 

This thesis is organized into five chapters. This chapter is the introduction and 

serves to introduce the reader to the problem of transport protocol implementation 

specification compliance testing, the purpose of this work. Chapter H gives an overview of 



the SNR protocol along with a review of the Systems of Communicating Machines (SCM) 

which serves to model the protocol. Chapter II also contains information about the 

modifications made to the specification in order to facilitate the testing process. Chapter 

in discusses the underlying concepts behind the test generation process, the method of 

producing both test traces from the implementation and test sequences from the 

specification, and details concerning the automated verification programs. Chapter IV 

discusses the results obtained from the examination of the implementation. Chapter V 

contains conclusions which may be derived from the given results and suggests additional 

work which remains to be done. 





II. THE SNR PROTOCOL 

A. BACKGROUND 

The SNR transport protocol is an attempt to overcome the difficulties experienced 

by the current transport protocols with some unique features which are different than the 

features of the other lightweight protocols. It was first introduced in [1], and in [10] a 

formal specification was given by using the Systems of Communicating Machines (SCM) 

model. The next section defines the protocol model SCM. 

B. SYSTEMS OF COMMUNICATING MACHINES (SCM) 

A number of models for protocol specification and verification have been defined; 

these are discussed in the references [3], [4], [5], [6], [7], and [8]. The model used here is 

called systems of communicating machines, and is briefly described in this section. A more 

detailed description and discussion can be found in references [9] and [10]. 

A system of communicating machines is an ordered pair C=(M, V), where 

M={mh m2,..., m„} 

is a finite set of machines, and 

V={v1,v2,...,vk} 

is a finite set of shared variables, with two designated subsets R^ and Wt specified 

for each machine mt. The subset Ri of V is called the set of read access variables for 

machine m-v and the subset Wt the set of write access variables for m-v 

Each machine mt z M is defined by a tuple (S/( s0, Lv Nit ii), where 

(1) Si is a finite set of states; 

(2) s0 E S, is a designated state called the initial state of m{, 

(3) L, is a finite set of local variables; 

(4) Nt is a finite set of names, each of which is associated with a unique pair (p, a), 

where p is a predicate on the variables of L, u i?, and a is an action on the variables of 



LlKjRi u Wt. Specifically, an action is a partial function a:L; xRi^Li x Wt from the 

values contained in the local variables and read access variables to the values of the local 

variables and write access variables. 

(5) x,.: SfXNi -» Si is a transition function, which is a partial function from the 

states and names of mi to the states of mv 

Let x {sh n) = s2 be a transition which is defined on machine m(. Transition x is 

enaö/ed if the enabling predicate p, associated with name n, is true. Transition x may be 

executed whenever iw£- is in state S] and the predicate p is true (enabled). The execution of 

x is an atomic action, in which both the state change and the action a associated with n 

occur simultaneously. 

The setL,- of local variables specifies a name and a range for each. The range must 

be a finite or countable set of values. 

A table called a predicate-action table (PAT) lists each transition name and the 

predicate and action associated with that transition. This table, together with the FSM 

diagrams and the variables make up the formal specification. 

C.     THE SNR TRANSPORT PROTOCOL 

The following abstract communication structure definitions are from [1]. The 

majority of the following text is extracted from [10] with some modifications. 

1.   Design Philosophy 

The key idea in the design of the SNR protocol is to provide rapid processing of 

packets. This goal is achieved through simplicity, reduction of processing overhead and 

utilization of parallel execution of tasks. In order to achieve these goals, the following 

design principles are observed: 

• Periodic exchange of complete state information and eliminating explicit timers, 
• Selective repeat method of retransmission, 
• The concept of packet blocking, 
• Parallel processing. 



Further elaboration of these design principles can be found in [1] and [10]. 

2. Modes of Operation 

The following three modes of operation are specified: 

Mode 0 has no error control or flow control. It is suited for virtual circuit networks 

and for the cases where quick interaction between the communicating entities is desired and 

short packets are used. 

Mode 1 has no error control but provides flow control. This mode is suitable for 

real time applications such as packetized voice or real-time monitoring of a remote sensor 

where error control is not needed and packet sizes are small. Also convenient if the 

underlying network is reliable. 

Mode 2 has both error control and flow control. This is the most reliable mode and 

it is useful for large file transfers in all types of network services. 

3. Machine Organization and General Overview 

The protocol can be envisioned as connecting two host computers end-to-end 

across a high speed network as shown in Figure 1. 
Host Host 

Entities 
H                1 

Protocol 
Processor 

J                1 •1               1 

H               1 

Figure 1 : Network, Hosts, Entities and Protocol Processors 

This protocol requires a full duplex link between two host systems. Each host 

system in the network consists of eight finite state machines (FSM), four for executing the 

transmitter functions, and four for executing the receiver functions. 

The general organization of the machines is shown in Figure 2 (this figure is an 

extension of a similar figure in [1]). Each machine in the protocol performs a specific 



function in coordination with other machines.  The coordination is established by 

communicating through shared variables which will be explained later. 

Machine Tl is responsible for the transmission of new data packets and 

retransmission of old packets. Machine T2 establishes the connection with the receiver and 

thereafter processes the incoming receiver control packets and updates related tables and 

variables as the blocks are acknowledged. Machine T3 sends transmitter control packets to 

the receiver periodically. Machine T4 is the host interface of the transmitter. It inserts the 

incoming data stream into the buffer for transmission by machine Tl. 

Tl 
and retransmit 

old blocks) 

T4 
(Host interface) 

,^T2 
(Connect; 

process incoming 
control packets) 

T_CHAN 

T_CHAN 

R CHAN 

T3 
(Send transmitter 

control packets) 

Rl 
(Receive 
data packets) 

< ' 
„R2 
(Connect; 

process incoming 
control packets) 

R4 
(Host interface) 

R3 
(Send receiver 

control packets) 

Figure 2 : Machine Organization 

Machine Rl removes the data packets from the transmitter channel and inserts them 

into the buffer in order according to their sequence numbers. Machines R2 and R3 are 

receiver counterparts of transmitter machines T2 and T3. Machine R2 receives the 

connection request messages sent by machine Tl. After the connection establishment, it 

receives the transmitter control packets. Machine R3 sends the receiver control packets at 

periodic intervals through the receiver channel. Machine R4 is the host interface of the 

receiver. It retrieves the data packets from the buffer and passes them to the host. 



4.   Services Provided 

The protocol provides for the following general services: 

Multiplexing, demultiplexing, 

Connection management, 

Sequenced delivery, 

Flow control, 

Error recovery. 

D.    COMMUNICATION STRUCTURES 

In this section the communication structures are defined for background 

information. The information provided it taken directly from [10]. 

To illustrate discussions in this section the machine organization diagram, Figure 2, 

is extended to include communication structures as well as the global shared variables in 

the transmitter and the receiver and shown as Figure 3. 
OUTBUF .—-^—^_—^_ 

T CHAN 
retrans 

i. trans 
tail 

T4 
(Host interface) 

Tl 
(Send new blocks 
and retransmit 

old blocks) 

Rl 
(Receive 
data packets) 

INBUF 
head 

,„T2 
(Connect; 

process incoming 
control packets) 

T_CHAN 

R_CHAN 

Transmit 

Accent 
Fail 

T_active 

Disconnect 

NOU 

buffer 

T3 
(Send transmitter 

control packets) 

„J*2 
(Connect; 

R4 
process incoming (Host interface) 
control packets) 

R3 
(Send receiver 

control packets) 

R_active 

received 
Disconnect 

Buffer_avail 

LWr 

UWr 

LUP table RECEIVE 
Seq count Ack 

Figure 3 : Machine Organization Including the Shared Variables 

1 1 1 
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1.   Communication Channels 

The logical links connecting the two entities are modeled as queues which are 

called "communication channels" in the specification of the protocol. 

T_CHAN is the channel from the transmitter to the receiver. This is the channel in 

which the transmitter sends connection requests, connection confirmation messages, data 

packets, transmitter control packets and disconnect messages. As shown in Figure 3, Tl 

and T2 write messages into T_CHAN, while Rl and R2 read messages from T_CHAN. 

R_CHAN is the channel from the receiver to the transmitter. This channel carries 

the connection acknowledgment messages and receiver control packets sent by the receiver 

(R2 and R3). 

2.   Buffers 

Figures 4 and 5 show the buffers used in the transmitter and the receiver. It is 

assumed that the data stream is already divided into packets by the host. 

OUTBUF: This is where machine T4 deposits the data packets it gets from the host 

for transmission. Machine Tl extracts the packets from here, adds the header parts and 

transmits them to the receiver. A schematic illustration of OUTBUF is shown in Figure 4. 

RETRANS 
|yi Acknowledged 

p;:|  Waiting to be 
^"^  acknowledged 

I    I   Waiting to be 
transmitted 

PI  Empty 

-Retransmission 
buffer 

Transmission, 
buffer 

Figure 4 : OUTBUF: Transmitter Buffer 

As it can be seen in the figure, this buffer has two parts: Retransmission buffer and 

transmission buffer. The retransmission buffer is located before the transmission buffer and 

holds the packets that have been transmitted by machine Tl but not acknowledged yet. The 

transmission buffer holds the packets which have been buffered by machine T4 and waiting 
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to be transmitted. These buffers are marked by three pointers called RETRANS, TRANS and 

TAIL. 

The purpose of dividing the OUTBUF into two parts is to avoid the movement of 

data packets within the buffer, which is a costly operation. With the buffer scheme 

explained here, the data packets which are enqueued at the end of the transmission buffer 

remain in their places until they are acknowledged by the receiver. 

INBUF: Each logical connection has its own pre-negotiated buffer in the receiver 

called INBUF. This temporarily holds the data packets until they are retrieved by the 

receiving host. Another function of this buffer is to reorder the data packets that arrive out 

of sequence. Received data packets are inserted into buffer locations whose indexes are 

calculated from the sequence numbers. Figure 5 depicts the schematic diagram of INBUF. 
HEAD 

INBUF 

m 

" Passed to the host 

PH Waiting to be 
^■^  passed to the host 

I    I Empty (not received) 

RECEIVE 

loloioimi HOI niioiilolihlololololololololololol 
Figure 5 : INBUF and RECEIVE: Receiver Buffers 

RECEIVE: This is an array of bits where each bit maps to a location of INBUF. The 

purpose of this bit array is to indicate if any location of INBUF contains a data packet. A 

RECEIVE bit set means that there is data in the corresponding INBUF location. This 

scheme has three uses: First, it helps detection of duplicate packets whose block sequence 

numbers are greater than LWr secondly, it is used in determining whether or not a whole 

block has been received for acknowledgment purposes and finally it indicates to machine 

R4 whether there is a data packet in the buffer ready to be retrieved. 

After machine R4 passes a block of packets to the host, it sets the corresponding 

RECEIVE bits to 0. The buffer allocation and deallocation for the packets is done in a very 
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simple way by the protocol and no operating system support is needed, except for the 

allocation of a buffer space for INBUF in the memory. 

AREC: This is another array of bits, whose size is equal to the number of blocks that 

can be stored in INBUF. Each bit in this array corresponds to a block of packets in INBUF 

starting from the first location, so that bit 1 of AREC corresponds to the first block of 

packets, bit 2 corresponds to the second block of packets and so on. When all the packets 

in a block have been received, the AREC bit for this block is set to 1. This array is used to 

acknowledge the blocks together with LWr and LOB array. 

These structures are used as follows in order to acknowledge the data packets 

received correctly: Upon reception of a data packet by the receiver, a check for duplicate 

detection is done. The packet is a duplicate if the block number that contains the packet is 

less than LWn or if the RECEIVE bit corresponding to the packet sequence number is 1. In 

this case, the packet is discarded. Otherwise, it is inserted into the corresponding INBUF 

location and the RECEIVE bit for this location is set to 1. If this packet completes the 

reception of a whole block of packets, then either LWr is increased until it is equal to the 

sequence number of the first incomplete block (if the completed block is LWr), or a bit 

corresponding to that block in AREC is set to 1 (if the completed block is different than 

LWr). Thereafter, AREC is copied into the LOB array for transmission in a receiver control 

packet to acknowledge the successfully received blocks. 

3.   Major Variables 

The major transmitter variables are shown in Table 1 and the major receiver 

variables in Table 2. 

name accessed Dy machines type or purpose 
OUTBUF T1.T4 buffer messages for transmission 
retrans.trans.tail Tl (subroutines) pointers to OUTBUF 
Transmit T2.T4 boolean 
Accept T2.T4 boolean 
Fail T2.T4 boolean 

Table 1: Major Transmitter Variables 

12 



name accessed Dy maclunes type or purpose 
T_active T1,T3,T4 boolean 
sent T1.T3 boolean 
Disconnect T2,T3 boolean 
scount T2.T3 counter 
NOU T1.T2 number of unack'd data blocks 
LUP(seq,count,ack) T1.T2 table for transmitted data blocks 
mode T1,T2 store current mode 
UWt Tl upper window, transmitter 
LW, T2 lower window, transmitter 
k T2,T3 interval between control packet transmissions 
L Tl max window size 

Table 1: Major Transmitter Variables 

name accessed oy macbines type or purpose 
INBUF R1.R4 store incoming data packets 
head R1.R4 pointer to INBUF 
R_active R1,R2,R3,R4 boolean 
Disconnect R3.R4 boolean 
Buffer_avail R1JR4 boolean 
scount R2.R3 counter 
LWr R1.R4 lower window, receiver 
UWr R1.R4 upper window, receiver 
RECEIVE R1.R4 bit array for packets in INBUF 
AREC R1.R4 bit array, blocks in INBUF 
mode R1,R4 mode indicator, 0,1 or 2 
LOB R1.R4 bit array, for acknowledgments 
k R3 interval between control packet transmissions 
received R1.R3 boolean 

                                       _=r 1 

Table 2: Major Receiver Variables 

E.     FORMAL SPECIFICATION-MODIFIED FOR TESTING 

In this section, a formal specification of the SNR transport protocol will be given 

using the SCM model. The FSMs and PATs given are the ones used to define the 

specification for the tests. No new states were added to those given in [10] but some 

transitions were added. The additional transitions are the result of removing all the or 

conditions in the predicates and the conditional statements from the actions. This gives a 

set of predicates and actions which may be directly compared with the test run trace data. 

Another approach to removing conditional predicates would have been to add 

additional states, transitional in nature, exited based on the conditional portions of the 
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original transitions. This approach is less preferable as it increases the complexity of both 

the FSM and the PAT. Where n is the number of or conditions in the original specification, 

adding states increases the transition number by n versus n-1 for the splitting method. 

1.   Modifications to the Transitions 

I     no err ©err_c 

Transition 
start 
finish 
retransmit 1 

retransmit? 

Predicate 
T_active=T 

_active=F 
T_active=TA 

mode= 2 A Expired(LUP) /=0 
A retrans_count <= block size 

transmit_ 
blkl 

i'_active=TA 

mode= 2 A Expired(LUP) /=0 
A retrans_count > block size 

Action 
null 
rar 

transmit_ 
blk2 

transmit 
blk3 

'l_active=T A 

not (Empty(OUTBUF)) A 

trans_count <= blk_size A 

mode=0 

■BIT  
completed 

no (low 
flow_chk 1 
How chk2 
no en- 
err chk 

T_active=T A 

not (Empty(OUTBUF)) A 

trans_count <= blk_size A 

NOU < L A 

buffer - NOU>0 A 

mode=l 

_active=T A 

not (Empty(OUTBUF)) A 

trans_count <= blk_size A 

NOU < L A 

buffer - NOU>0 A 

Expired(LUP)=0 

lJackeLseq:=(Expired(LUP)-l)iblock_size+" 
retrans_count; 

PackeLdata:=OUTBUF(Packetseq mod 
OUTBUF'length); 

Enqueue(Packet,T_CHAN); 
sent := T; 
inc (retrans_count); 
'ackeLseq :=(fcxpired(LU P)-1 )*block_size+ 

retrans_count; 
PackeLdata:=OUTBUF(Packetseq mod 

OUTBUF'length); 
Enqueue(Packet,T_CHAN); 
sent := T; 
retrans_count:=l; 
LUP((Expired(LUP)-l) mod L+l).count   := 
initial value; 
retrans_count ;= 1;        ~ ~~ 
Packet.seq:=UWt * bIock_size + trans_count; 
Dequeue(PackeLdata,OUTBUF); 
Enqueue(Packet,T_CHAN); 
sent:=T; 
inc (trans_count); 

trans_count > blk_size 

mode = 0 
mode = 1 

retrans_count := 1; " 
Packet.seq:=UW, * block_size + trans_count; 
Dequeue(PackeLdata,OUTBUF); 
Enqueue(Packet,T_CHAN); 
sent:=T; 
inc (trans_count); 
retrans_count := 1; 
Packet,seq:=UW, * block_size + trans_count; 

Dequeue(Packet.data,OUTBUF); 
Enqueue(Packet.T_CHAN); 
sent:=T; 
inc (trans_count); 
trans_count := 1; 
inc (UW,); 

"HuH  

mode = 2 
mode = 1 
mode 

inc (NOU); 
inc (NOU); 
rar 
Insert (UW..LUf>); 

Figure 6 : Tl State Diagram and Modified Predicate-Action Table 
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Machine Tl is responsible for transmission of new data packets and retransmission 

of unacknowledged packets whenever required. Figure 6 shows the state diagram and the 

modified predicate-action table. 

The retransmit transition was split into two, the difference being in what was 

previously a conditional action based on the comparison of retrans count and block size. 

The transmit block transition was split into three based on the conditional portion 

of the original predicate conditions: mode=0, or mode=l and buffer - NOU > 0, or 

Expired(LUP) = 0 and buffer - NOU > 0. 

The flow check transition was split to reflect mode 1 or mode 2. 
Predicate Transition 

request 
accept 

unaccept 

accept 

no err 

unaccept 

:lock 
ok 
timeout 
retry 
quit 
finish 1 

hnishZ 

finish3 

ibort 

no flow 

discardl/2 
lupdate 

\flow_chkl/2 © 

discard 1 
discard2 

Transmit=T A Accept^^Fail^F 
k_t'HAN(tl

ront) = 6,
onn_/icAA 

Acceptable (R_CHAN(front)) 

R_CHAN(front) = Conn AckK 

not (Acceptable (R_CHÄN(front))) 
Empty (KCHAN)A clock tick 

Action 

delay < reset 
delay = reset 
attempts < max_attempts 
attempts = max_attempts 
transmit = F Empty (OUTBUF) A 

Disconnect = F A mode = 1 
Transmit = F A Empty (OUTBUF)

A 

Disconnect = F A mode = 0 
Transmit = F A Empty (OUTBUF) A 

Disconnect = F A 

mode = 2 A Empty (LUP) 
Jisconnect: 

not (Empty (K_LHAN))A Disconnect=F 

update 
no flow 
flow chkl 

flow chJcZ 

no_err 
~cnF 

K_CHAN(front )=C'o/in_AcF 
K_CHAN(front).seq <= high" 
K_CHAN(front).seq > higF~ 

Enqueue (Connjieq, T_CHAN); 
l_active := T; 
Enqueue (ConnConf, T_CHAN); 
Dequeue (R.CHAN);  
Accept :=F; 
Dequeue (R_CHAN);  
inc (delay); 
null 
mc (attempts); delay:=0; 
Enqueue (Connjieq, T_CHANT 

T_active:=F; 
Enqueue (Disc. T.CHAN) 
T_active:=F; 
Enqueue (Disc, T.CHAN); 
T_active:=F; 
Enqueue (Disc, T_CHAN) 

T_active:=r-; Transmit:=F; 
null 
Dequeue(R_CHAN); 

mode = 0 
mode= 1 

mode = 2 

mode = 1 
mode = 2 

Uequeue(K_CHAN);  
scount:=0;high:=K_CHAN(tront).se'qT 
Dequeue(R_CHAN); 
Balance(Rj^AN(irom).Lol},HÖLD, 

R_CHAN(front).LWr.LW,. NOU); 
HOLD := R_CHAN(front).LOB; 
LW, := R_CHAN(front).LWr; 
buffer := R_CHAN(front).buffer_avail. 
Update outbuf (OUTBUF. LW,); 
UaUnce(K_CHAN(iromi.LoB.H0LD, 

R_CHAN(front).LWrXW„ NOU); 
HOLD := R_CHAN(front).LOB; 
LW, := R_CHAN(front).LWr; 
buffer.- R_CHAN(front).buffer_avail. 
Update outbuf (OUTBUF. LW,); 
Dequeue (R_CHAN); 
üPdate_LUP (LUP. HOLD, LW, 

R_CHAN(front).k); 
Dequeue (R_CHAN); 

Figure 7 : T2 State Diagram and Modified Predicate-Action Table 
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Machine T2 has two responsibilities: (/) connection establishment and termination, 

(z'O reception and processing of receiver control packets. The state diagram and the 

modified predicate action table are presented in Figure 7. 

The finish transition was split into three based on the following: mode is 0, or mode 

is 1, or mode is 2 and Empty(LUP). 

Discard was split based on R_CHAN(front).seq <= high or R_CHAN(front) = 

Conn_Ack. 

No flow was split for mode is 1 or mode is 2. 

Machine T3 has two main responsibilities in the protocol: periodic transmission of 

transmitter control packets and initialization of abnormal connection termination if no 

receiver control packets are received for a predetermined amount of time. The state 

diagram and the modified predicate action table are presented in Figure 8. 

Transition Predicate Action 
start l_active=l null 
clock clockjick" l_active = T inc (scount) 
no_data sent=h inc (count) 
delay count < k A scount < Lim null 
timeoutl scount = Lim Enqueue (7_jtote,T_(JrlAN); 

k:=min(2*k,klim) 
timeout2 count = k Enqueue (7\itote.T_C]:HAN); 

k:=min(2*k,khm) 
data sent = 1 Enqueue (V stale, 1  CHAN1); 

k:=l 
no_disc scount < Lun sent:= h; count:= 0 
disc scount = Lira Disconnects 1 
coniirm I_active = H null 
lirush               1 l_active = 1- null                 

Figure 8 : T3 State Diagram and Modified Predicate-Action Table 

The original PAT listed the predicate conditions for a timeout as count = k and 

scount = LIM, but the correct condition for a timeout should be count = k or scount = LIM. 

Timeout was split into two based on this or condition. 

Machine T4 is the interface to the host transmitter and performs the necessary 

communication between the transmitting host and the other machines. The state diagram 

and the predicate action table are depicted in Figure 9. 
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Transition Predicate Action 
signal transmission signal from the host Transmit := T; Accept := T 
fail Fail = T Transmit := F; 

notify host of failure to connect; 
unaccept Accept = F notify host of unacceptable connection 
start T_active = T null 
write not (Full (OUTBUF))A not(eot)A 

T_active=T 
Enqueue (data stream from the host, 

OUTBUF) 
finish eot A T_active = T Transmit := F 
confirm T_active = F notify host of completion 
disc T_active = F notify host of disconnect 

Figure 9 : T4 State Diagram and Predicate-Action Table 

Upon receiving a transmission signal from the host, T4 initiates the execution of the 

protocol. As long as the connection is active, T4 writes the data into the buffer and Tl 

transmits them. When the end of transmission signal is received from the host, T4 initiates 

the connection termination and also gives necessary messages to the host informing it about 

the state of the connection. 

Machine Rl removes the data packets from T_CHAN and inserts them into their 

buffer2a/b 

Transition 

start 
finish 
receive 
no TuF 

bufferla 

Predicate" 
KacUv^^T"""^^^- 

K_active = F A Empty (INBUF) 
T_CHAN (front) = DATA 

buffed b 

buffer2a 

buiier2b 

mode = 0 

mode = 1 A duplicate = F 

mode = 1 A duplicate = 1 

mode = 2 A duplicate = F 

Action 
Tsr 
null 
null- 

mode = 2 n duplicate = T 

Fass l_CHANl (front) to the host; 
Dequeue (T_CHAN)  
Order_insert(T_CHAN(from). INBUF, 

RECEIVE, LWP   duplicate); 
received := T; 
Process_packet (T_CHAN(front).seq. RECEIVE. 

AREC.Buffer_avaü,LWpUWnLOB); 
Dequeue (T_CHAN);  
Order_insert(T_C"HAN(fronO, INBUF,  

RECEIVE, LWP   duplicate); 
Dequeue (T_CHAN);  
Order_lnsert(T_C'HAN(front), INBUF,  

RECEIVE, LWP  duplicate); 
received := T; 
Process_packet (T_CHAN(front).seq. RECEIVE. 

AREC.Buffer_avauXWpUWr10B); 
Dequeue (T_CHAN);  
Order_insert('l_(L'H AN (front). INBUF. 

RECEIVE. LWP  duplicate); 
Dequeue (T_CHAN); 

Figure 10 : Rl State Diagram and Modified Predicate-Action Table 

allocated locations in the buffer INBUF, discards duplicate packets, and updates the 

structures used for flow control and error recovery management (RECEIVE, AREC and 
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LOB). In mode 0, Rl passes the packets to the host directly without buffering and without 

performing any kind of error or flow control operation. The state diagram and the modified 

predicate action table of machine Rl are given in Figure lO.The original buffer transition 

had a conditional action based on whether or not the packet was a duplicate. It has been 

split into four, first by mode and then by the value of the duplicate flag. 

Machine R2 is the receiver counterpart of transmitter machine T2. The state 

diagram and the predicate action table is depicted in Figure 11. 

timeout/ 
Predicate 

T.CHAN (front) = Conn_Req 

clockJkk A Empty (T_CHAN) 

Action 

delay < reset 
delay = reset 
TJJHAN (front) = Conn_conf 
l_CHAN(iront) = T_.5tate 
l_CHAN(lront) = .£>a2a 

Disconnect = T 
i'_CtiAH(!ronl)=b!sc 
J_CHAN(front) = T_Jta/^ 
T_CHAN(front).seq > high 

rj-'HAN(front) = Conn_conT 
TJJHAN(front) = ConnJ7q~ 
T_(JHAN(ironO = y>tf<rA 

T_CHAN(front).seq <= high 
_CHAN(tront) = Conn req 

Evaluate (Conn_req); 
Dequeue (T_CHAN); 
Enqueue (Connack, R_CHAN); 
inc (delay) 
Enqueue (Connack, R_CHAN); 

■a- 

R_active:= T; Uequeue(T_CHAN); ' 
K_active:= 'I; 
K_active:= 'I; 
K_active := F; 
K active := F; 
scount := 0, 
high := T_CHAN(front).seq; 
Dequeue (T_CHAN); 
Dequeue (TJJHAN); 

Dequeue (i_CHAN); 

Dequeue T.CHAN); 
Enqueue (Connack, R_CHAN) | 

Figure 11 : R2 State Diagram and Modified Predicate-Action Table 

First, it establishes the connection with the transmitter and thereafter receives and 

processes the transmitter control packets. 

The start transition was split based on the three original or conditions: 

T_CHAN(front) = Conn_conf, or T_CHAN(front) = TJtate, or T_CHAN(front) =Data. 

The finish transition split into two based on either T_CHAN(front) = Disc or 

Disconnect flag is set to true. 

The discard transition was split into three: T_CHAN(front) = Conn_conf, or 

T_CHAN(front) = Conn_req, or TCHAN(front) = TJtate and T_CHAN(front).^ <= 

high. 
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Machine R3 has exactly the same structure and function as transmitter machine T3 

as shown in Figure 12. The R3 PAT contained the same error as the T3, the and rather than 

or condition for determining timeout. Fixing this required splitting the timeout transition 

into two: count = k and scount = LIM. 

Transition Predicate Action 
start K_acti ve= 1 null 
clock clock_tick A K_active=T mc(scount) 
no_data received=F inc(count) 
delay count<k A scount<Lim null 
timeoutl count=k enqueue(R_state Ji_CHAN); 

k:=min(2*k,klim) 
timeouß scount=Lim enqueue(R_state,R_CHAN); 

k:=min(2*k, klim) 
data received=T enqueue(R_state, R_CHAN); 

k:=l 
no_disc scount<Lim received:=F; count:=0 
disc scount=Lim Disconnect:=T 
confirm R_active=F null 
finish R_active=F null 

Figure 12 : R3 State Diagram and Modified Predicate-Action Table 

Machine R4 provides the interface to the receiving host by passing the data in 

INBUF to the host and notifying the host of any errors which may occur during the 

reception of the data packets. The state diagram and the predicate-action table of machine 

R4 is depicted in Figure 13.The accept transition was split to reflect mode 1 or mode 2. 

retrieve 

Transition 
start 
finish 

disc 
accept 1 

ept2 

wait 
retrieve 

err chk 

Predicate 
R^active^T^^^^^^^^™^^- 

K_active = F A Empty (INBUF)A 

Disconnect = F 
Disconnect = 1 
Disconnect = F A 

not (Empty(INBUF)) Amode=l A 

signal from host 
Disconnect = F A 

not (EmptyflNBUF)) A mode=2 A 

signal from host 
mode = 1 
Wait (INBUF. Rt-CFJVI-) = T 
VVait (INBUF, RLt'i-IVr^I-' 

mode = 2 

Action 
null 
TOT" 

notify host of disconnect 
"ssa  

TOT" 

innr 
null 

Ketrieve_modei (INBUKRECEIVE,  
 ARECbuffe^avaüXWpUWpLQB): 
Ketreive_mode2 (INBUFJ^ECEIVE. butfer_avaü); 

Figure 13 : R4 State Diagram and Modified Predicate-Action Table 
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III. TESTING OF THE IMPLEMENTATION 

A.    TESTGEN 

Testgen was written by C. Basaran and is detailed in [11]. 

Testgen is a program which takes as input the formal specification of a protocol 

using the formal model systems of communicating machines, and outputs a sequence of 

tests for an implementation of a given protocol, see Figure 14. 

FSM (Text File) 

Predicate-Action Table    >~ 
(Text File) ^ 

Generated Test Sequence 
(Text File) 

Figure 14 : Testgen Overview 

1.   A Procedure for Generating Test Sequences 

In this section a procedure and its automation are described for generating a 

sequence of tests for a protocol specified as a SCM model. The input is the formal protocol 

specification (FSM and predicate-action table) specified as a system of communicating 

machines (SCM). This is a formal model, or formal description technique, defined in [14]. 

The output is a sequence of tests and an I/O diagram in a tabular format. The generated 

sequence is intended to be applied to an "inplementation under test" or IUT. 

Before generating the sequence of tests and the I/O diagram for each test in the 

sequence, shared and local variables must be identified. The test inputs (the shared and 

local variables that can be set in a controlled way) and the outputs (the shared and local 

variables can be observed for test purposes) should be identified. These inputs and outputs 

form the I/O for the test steps. 

The format for each single test is 

SI il, h> - »in > °h °2> - > °m SE 
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S; is the state of machine when the test begins. The z7 i2,... ,in are the values of the 

input variables at the start of test execution. The oh o2,..., om are the values of the output 

variables after test execution. SE is the state of the machine when the test is complete. The 

input and the output variables are taken from the shared and local variables of the machine. 

The determination of these variables is explained in the following section. 

The testing procedure explained below is written in three parts: 

• Preliminary steps, 

• Test sequence generating procedure, and 

• Refining steps. 

2.   Preliminary Steps 

1. From the machine specification FSM diagram, mark each transition 
whose name appears on more than one transition. Each such instance for 
a given name is given a separate distinguishing label. 
2. From the predicate-action table, note the number of clauses in each 
enabling predicate. Mark each clause. An enabling predicate may consist 
of several clauses, any one of which might be true, allowing the 
transition to execute. Marking each clause insures that each one is tested 
individually. 
3. For each shared variable x, determine if A: is an input variable, an 
output variable, or both. For each x which is both, split x into two 
variables, *,- and x0 for testing purposes. 

4. For each local variable /, determine if / is used as an interface to the 
higher layer user of this protocol. If so mark / as input, output or both. 
Each such local variable is specifically designated, and is an input 
variable if it appears in an enabling predicate, and an output variable if it 
appears in an Action part of predicate-action table. If / is both input and 
output, split it into two variables /,• and l0 for test purposes. 

3.   Test Sequence Generating Procedure 

Initially the test sequence is empty. 

1. state   <r-    initial state. 
2. Let t = (p,a) be an untested transition from state. 
(a) Determine the values of the input variables which make exactly one 
of the untested clauses of p true. Check to see if these values allow any 
other transition from this state to be executed. If there is one, set 
additional input variables to values that insure only the transition under 
test is enabled. Fill these in, and mark others "DC" for "don't care." 
(b) Determine and mark the expected values for the output variables; also 
record the expected values assumed by the local variables. 
(c) Set Si to state; determine the next state and set SE to it 
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(d) Determine if SE is transient; if not mark it as a "stop state" and skip 
to (3). The state is transient if one of its enabling predicates is true 
immediately upon reaching the state. This means that it can pass on to 
another state immediately, without waiting for further input. 
(e) Attempt to make SE into a stop state by setting "DC" values. That is, 
make the DC values such that, upon reaching state % none of the 
enabling predicates are true. If successful, go to (3). 
(f) If SE is a transient state and more than one transition leaving SE is 
enabled, choose one and set inputs not yet specified (if any exist), so that 
only one transition leaving SE is enabled; set t = (p,a) to this transition. 
3. Output this test Sj ilf i2 i„ I oh o2,... ,omSEzs the next test in the 
test sequence. 
4. Mark the clause just tested. If all clauses in transition t are now tested, 
mark t as tested. If all transitions are now marked as tested, exit to 
"refining steps." Otherwise, continue to step (5). 
5. Set state to SE. If state is a stop state go to (2), otherwise go to step2(b). 

Step 2(a) assumes that it is possible to set the input variables to values that make 

exactly one of the clauses true. If the protocol is well designed this assumption will 

generally be true. However, there is always a possibility this is not the case; if so, the test 

designer must choose the values so that the clauses will be tested as thoroughly as possible, 

perhaps in combination with other clauses. If a clause cannot be tested individually, the 

question of its necessity to the specification should be considered. 

Step 5 sets the starting state of the next test in the sequence to the ending state of 

the current test. This makes the ordering of the tests follow the order of their occurrence in 

the actual protocol execution. 

4.   Refining Steps 

1. Construct the I/O state diagram from the test sequence. 
2. Determine if the sequence are unique, so that from each state, we have 
a unique input output (UIO) sequence to confirm. If not attempt to extend 
the sequence so that we have a unique UIO sequence from each state. 
3. Check for any converging transitions. Mark these, as potential 
problems for testing. 

The I/O diagram can be constructed from the test sequence and is a tool to help the 

test designer insure completeness. This finite state machine is often used as the starting 

point in test generation in the literature. 
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A UIO sequence has been defined as a sequence of inputs such that, if the input 

sequence is applied to the FSM when FSM is in state i, the resulting output sequence could 

not have been produced by the FSM when the FSM is in any other state. If the sequence of 

tests applied to a machine implementation in a state i is a UIO sequence, and the output is 

expected, then we have a stronger argument that the machine was, in fact, in state i. 

This method is used by Testgen to produce the tests applied to the implementatin in 

this reasearch. 

5.   Input and Output 

The protocol is specified formally as a finite state machine with local and shared 

variables. The FSM input text file lists the start state, the end state, the number of the 

transition, and the transition name. The FSM description file for T3, one of the transmitter 

machines of the tested implementation, is shown in Figure 15. 

0 

Oil start 
12 2 clock 
2 3 3 no_data 
3 14 delay 
3 4 5 timeout1 
3 4 6 timeout2 
2 4 7 data 
4 18 no_disc 
4 5 9 disc 
5 0 10 confirm 
1 0 11 finish 

Figure 15 : Testgen FSM Input for T3 

The PAT input text file lists each transition by name, followed by a list of the 

predicates, followed by a list of the actions. The PAT description file for T3 is shown in 

Figure 16. 

The test program finds all paths which may be taken through the FSM and generates 

a sequence of tests to check all these paths. The text output of Testgen lists all of the 

transitions by name and gives the expected values. For predicates, a DC indicates a 'do not 
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care.' For actions, a '--' indicates a 'do not care.' A example of the text output file for T3 

is shown in Figure 17. 

start T active = T no I 
clock clock = T and T active = T scount := inc 1 
no_data sent = F count := inc 1 
delay count = LTk and scount = LTLim no 1 
timeoutl scount = Lim enqueue := T ; k := min 1 
timeout2 count = k enqueue := T ; k := min 1 
data sent = T enqueue : = T ; k : = 1 I 
no_disc scount = LTLim sent := F ; count := 0 1 
disc scount = Lim sent := F ; discon := T 1 
confirm T active = F no 1 
finish T_active = F no 1 

Figure 16 : Testgen PAT Input for T3 

Trans   I  I input variables 

I SiIT_activeI clock I count(i) Iscount(i)(sent(i) 

start 
finish 
clock 
no_data 
delay 
data 
disc 
confirm 
no_disc 
timeout 1 
t imeout2 

IT 
IP 
IT 
IDC 
IDC 
IDC 
IDC 
IF 
IDC 
IDC 
IDC 

IDC 
IDC 
IT 
IDC 
IDC 
IDC 
IDC 
IDC 
IDC 
IDC 
IDC 

IDC 
IDC 
IDC 
IDC 
I LTk 
IDC 
IDC 
IDC 
IDC 
IDC 
Ik 

DC 
DC 
DC 
DC 
LTLim 
DC 
Lim 
DC 
LTLim 
Lim 
DC 

IDC 
IDC 
IDC 
IF 
IDC 
IT 
IDC 
IDC 
IDC 
IDC 
IDC 

output variables 

count(o)IdisconI enqueue Ik  Iscount(o) I sent(o)I Sei 

inc   I-- I-- I-- 

I-- IT II 
IT I-- I — 

0     I-- I-- I-- 
I-- IT Imin 
I - - IT I mi n 

1 -- 11 
1 — 01 
l~ 21 
l~ 31 
1 -- 11 
1 -- 41 
IF 51 
I-- 01 
IF 11 
1 -- 41 
1 -- 41 

Figure 17 : Testgen Output for T3 

B.     MACHINE TEST TRACE GENERATION 

Each of the eight machines was modified to open an output file and write out the 

values of select local and shared state variables at each point where a state transition 

occurred. 

First, the code had to be carefully scrutinized to determine exactly where each state 

transition occurs. At the point immediately before leaving the current state, a call to the 

testdump function was made. The testdump function takes as input parameters the value of 

the current state and the value of the next state to be entered. This information along with 

the values of the key local and shared state variables is written to the trace output file. 
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The format of the output trace file matches that of the Testgen output file to allow 

for an inspection later. An example of the output generated for T3 is shown in Figure 18. 

Si IT_Active|clocklcount(i) Iscount(i)I sent I 
0 
1 
2 
3 
4 
1 
2 
3 
1 
2 
4 
1 
2 
4 
1 

T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
F 
F 
F 
F 

T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
T 
F 

I LTk 
! LTk 
I LTk 
I k 
I LTk 
I LTk 
I LTk 
I LTk 
I LTk 
I k 
I k 
I LTk 
I LTk 
I LTk 
I LTk 

LTLim 
LTLim 
LTLim 
LTLim 
LTLim 
LTLim 
LTLim 
LTLim 
LTLim 
LTLim 
LTLim 
LTLim 
LTLim 
LTLim 
LTLim 

F 
F 
F 
F 
F 
F 
F 
F 
T 
T 
F 
T 
T 
F 
F 

count(o)IDisconlenqueuel  k lscount(o; 
0 
0 

inc 

0 I 
0 I 

inc I 
— I 
— I 

0 I 
0 I 
0 I 
0 I 
0 I 

F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 

F 
F 
F 
T 
F 
F 
F 
F 
F 
T 
F 
F 
T 
F 
F 

II 
II 
II 

min I 
— I 

II 
II 
II 
II 
II 
II 

0 
inc 

sent(o! 
F 
F 
F 
F 
F 
F 
F 
F 
T 
T 
F 
T 
T 
F 
F 

I Se 
I 1 
I 2 
I 3 
I 4 
I 1 
I 2 
I 3 
I 1 
I 2 
I 4 
I 1 
I 2 
I 4 
I 1 
I 0 

Figure 18 : T3 Trace Output Example 

C.    THE VERIFICATION PROGRAMS 

Two programs were written to perform the verification process. TestPack is an Ada 

package which performs comparisons between the specification and the implementation. 

SNRTest is an Ada program which calls TestPack and allows the user to perform up to eight 

different verifications with one run. 

1.   TestPack 

Many of the trace files consisted of greater than 100 lines of output, and for some 

machines, such as T2, the number of predicates and actions was greater than 30. In order 

to check the trace files against the requirements generated by Testgen, a program called 

Testpack was written. The source code for Testpack can be found in the appendix. 

TestPack receives a record called filejiamejecord which contains the name of the 

files to test. The filejiamejecord is processed to resolve the actual names and directory 

locations of the files to be acted upon. 

TestPack starts by opening the Testgen file and parsing it. It skips everything until 

it locates a line starting with a '-' which indicates the next line will contain the predicate 

and action labels. The labels are read in and saved in an array called names. A counter is 

used to keep track of how may predicates and actions there are for this particular machine. 
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The program then skips down to where the requirements data is located. A 

temporary variable of type Testgen record is used to store the Testgen output. A Testgen 

record consists of the start state, the end state, the transition name, an array of strings called 

values which holds the expected predicates and actions, and times Jaken: a counter used to 

generate final statistics. 

Once all the data for a given line has been read, the program attempts to insert the 

data into the array of Testgen records called testjstates. The transition name is checked 

against all those already saved in test_states, and if it has not been inserted yet, it is added 

to the list. This process continues until the Testgen output file is exhausted. 

The next step in the process it to begin reading in the trace file. The program is 

designed to allow the user to input the source directory path as numerous directories were 

needed to hold the results of the different tests. The path is added to the file name and the 

file is opened for reading. At the same time an output file is opened in the same subdirectory 

to receive the results of the comparisons. 

The program skips down to the first line of data and begins reading it in, first the 

start state, then the end state. The predicate and action values are stored in an array of 

strings called temp. 

The program loops while attempting to match both the start and end state values of 

a saved testgen records in test_states. When both are matched, the test_state array index 

number is saved in an integer array called a_states_match, then the function 

Matchpredicates is called. Match predicates compares the values of the predicates, 

checking only those not listed as 'do not care' and returns a boolean indicating the result. 

A predicate match success leads to the calling of the Match_actions function. 

Match_actions attempts to match all those actions not listed as 'do not care' and returns a 

boolean indicating the result. 
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A successful return from Match_actions causes the function Report jnatch to be 

called which writes the start and end state data followed by the transition name to the output 

file, see Figure 19. 

THE MODE IS 0 

match S L:  0 Se 1 Transition: start 
match S 1 :  1 Se 2 Transition: clock 
match S L:  2 Se 3 Transition: no data 
match S :  3 Se 4 Transition: timeout2 
match S :  4 Se 1 Transition: no disc 
match SJ :   1 Se 2 Transition: clock 
match S] :  2 Se 3 Transition: no data 
match Si :  3 Se 1 Transition: delay 

Figure 19 : Predicate and Action Match 

Failing Match_actions causes the Report_error function to be called which 

indicates which action failed to match and then echoes out both the test data line and the 

Testgen data which had matching predicates. This information tells the user exactly where 

and how the implementation deviated from the specification, see Figure 20. 

ERROR-Transition -> clock        ACTION -> scount(o) failed to match. Found: —    Expected- inc 
T_act we clock, count ,i,  I scour* «i, I sent(i, ,count,o, Idisconlenqueue ,k    ,scount,o) "sentto, 
„        IT    ILTk       ILTLim     IT      |—      |F     IF       |-—  |-—       |T 

IT    IDC       'DC       ™ I"      I-    I-      I-   line      ,'--       ! 

Figure 20 : Predicate Match With Action Match Failure 

If all the test states have been examined without a match, Report_error is called 

which outputs the trace data and a message indicating a failure to match any of the existing 

transitions, see Figure 21. 

ERROR--Predicate failed to match transition from Si:  1 to Se■  2 

T_active  !"l0Ck!^nt(i)  '™t(i) I s«>t (i), count (o) I di scon I enqueue Ik I scount ,o) I sent (o)   | 

Should have matched:      '^    '*     ' ° 'F    IF IJ ^ 
T IT        IDC IDC IDC i- ,-        ,.. ... |inc ,.. 

Figure 21 : Predicate Match Failure 

Testpack continues reading in trace information until the data is exhausted. The 

final step in the automated analysis to write out the statistics concerning each transition. 

Every successful match caused the timesjaken counter in the Testgen record to be 

incremented. The labels for the predicates and actions are written followed by the data in 
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each of the Testgen records. The taken information allows the user to identify transitions 

which have not been tested, see Figure 22. 

Taken Si Se Name T_active1 clock 1 count( L) 1 scount (: )1 sent(i) count(o) disconlenqueue Ik scount(o) sent(o) 1 0 1 start T IDC IDC IDC IDC _- __ 1 — 1 — __ 
1 1 0 finish F IDC IDC IDC IDC __   I-- I-- 
2 1 2 clock T IT IDC IDC IDC __ __ 1 — inc 
2 2 3 no_data DC IDC IDC IDC IF inc __ 1 — 1 — 
1 3 1 delay DC IDC ILTk ILTLim IDC   __ I'- __ 
2 2 4 data DC IDC IDC IDC IT __ __ IT ll 
0 4 5 disc DC IDC IDC ILim IDC __ T 1 — 1 — F 
0 5 0 confirm P IDC IDC IDC IDC __ __ 1 — 
3 4 1 no_di sc DC IDC IDC 1LTLim IDC -0- __ 1 — 1 — F 
0 3 4 timeoutl DC IDC IDC ILim IDC   __ IT Imin   
1 3 4 timeout2 DC IDC Ik IDC IDC — — IT Imin -- -- 

Figure 22 : Final Statistics Output 

2.   SNRTEST 

SNRTest was written to facilitate the verification process. The program, the source 

code for which is in the appendix, allows the user to input the names of up to eight machines 

as well as the path to the subdirectory where the data is stored. All test trace output files 

have a name of the form machine.out such as tl.out. The Testgen output files have names 

of the form machineres.txt, such as tlres.txt, and reside in the directory from which 

SNRTest is invoked. 

The user is first prompted to enter the name of the machines to be tested separated 

by single spaces. This data is parsed and saved in a record structure called a 

filejiamejecord. The file_name_record already contains the names of the files minus the 

machine name prefix which is prepended. A count of how many machines will be tested is 

kept as the program parses the input string. 

The user is then asked to input the path to the data. This information is put into each 

of the file _name_re cords. 

Finally, SNRTest loops the number of times corresponding to the count of the 

machines to be tested, passing a single file_name_record to TestPack for processing. 
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D.     THE TESTING 

The modified protocol implementation was used to send files from one machine to 

another. The resulting trace files, along with the Testgen output files, were then processed 

using the SNRtest. The results of these examinations are contained in the next chapter. 
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IV. TEST RESULTS 

The preceding chapter presented the methods used to generate the test trace and the 

specification data discussed about the program used to compare the two. This chapter 

contains information about what was done to generate the test data, comments about the 

performance of the implementation as experienced during the test data generation, 

comments about the general approach taken to implement the tests, and the findings based 

on the analysis performed on the collected data. 

A.    BLACK BOX VERSUS WHITE BOX TESTING METHODOLOGIES 

The ideal approach to performing a verification test such as this would be as a 

'black box,' that is, to test the implementation from a purely outside perspective without 

regard to the inner workings. This method is preferable as it focuses strictly on the input 

and output (predicates and actions) of the machine under test and does not require the tester 

to know about, or necessarily understand, the inner workings of the test subject. The tester 

need only provide input to the machine, observe the resultant behavior and compare it to 

what is specified to occur. 

The testing approach taken here was more a 'white box' method. Because additions 

to the tested code had to be made, the tester was required to become intimately familiar with 

the implementation in order to correctly position data collection instructions. No less than 

six errors were made in the initial modifications which, until identified, made it appear the 

implementation was at fault. 

The most common error occurred in machines which had transitions which had as 

an action, the changing of a value used to determine the predicate condition. Each output 

function was called at the end of a transition, just prior to entering the next state. In reading 

the ending values of the modified state variables, it appeared, in some cases, that the 

predicate conditions had failed. This problem was overcome by saving all the 'old' values 

in another variable, local to the test output function, just prior to returning to the main 
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program. A better approach would have been to make two calls to the output file, one 

immediately as a state is entered and a second just prior to exiting the state. 

B.     LIMITATIONS 

The test procedure followed here can reasonably assure the tester that all tested 

transitions which worked will continue to work as demonstrated. It cannot, however, be 

guaranteed that every machine will always terminate, that is, return to the starting state. 

This particular set of machines, because of the concurrent nature of their execution, 

presents a special set of potential problems. Unless the hardware used to run the different 

machines is able to support a dedicated processor for each one, the operating system will 

need to make scheduling decisions. The nondeterministic nature of the operating system's 

scheduling algorithm may cause the behavior of the machines to vary for no apparent 

reason. 

During the conduct of the tests there were a couple of instances where the receiver 

was started and allowed to stabilize, but when the transmitter was started it was not able to 

locate the receiver. The only conclusion which could be made from this occurrence was that 

the receiver machines must have been scheduled in such a way as to have created a 

deadlock type condition. Further analysis of the interprocess communications should be 

undertaken to attempt to locate the cause of this rare situation. 

C.     DATA COLLECTION 

1.   Standard/Error Free Connection Tests 

The initial step was to test the receivers and transmitters during the transmission of 

a file on an 'error free' connection. For the majority of tests a small file, consisting of 16 

lines of ascii text, was used since it was large enough to require multiple blocks be used for 

its transmission but not so large that thousands of lines of output were generated by the 

various machines. The goal was to test each transition at least once, theorizing by induction, 

if it works once it will work correctly any number of subsequent times. 
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For each of the three modes the receiver was started and then the transmitter was 

started and ran until completion of the file transmission. The receiver was then halted to 

cause the output files to be closed. The data generated for all eight machines was then 

moved to a separate subdirectory, corresponding to the mode tested, for later analysis. 

An analysis of the data collected for the error free connections revealed numerous 

transitions which were not taken. The untested transitions, for the most part, represented 

those designed to handle unexpected or lost packets and connection failures. Additional 

tests were called for to test these transitions. 

2.   Connection Interruption Test 

A larger file, consisting of 1000+ lines of ascii text, was used to test how the 

machines would react if the connection was interrupted. The transmission time of the file 

was significantly long to allow for a manual disruption of the connection. 

After starting the receiver, the transmitter was started. After the connection phase 

was completed and transmission of the file begun, the receiver was prematurely halted. The 

receiver was designed to allow the user to gracefully end its run by typing in the word 'ok.' 

This technique caused the transmitter machines to exercise additional transitions not tested 

during the first phase of tests. An interruption of transmission was done for connections in 

all three modes. 

3.   Refused Connection Test 

The transmitter and receiver must agree on the terms of the connection before it is 

made. In order to cause a connection failure due to a disagreement on the connection set up 

parameters, machine R2 was modified to return a different block size in its connection 

acknowledgment to T2 than it received in its connection request from T2. Machine T2 then 

found the connection to be unacceptable and exercised the unaccept transition and halted. 

The T4 machine also exercised the unaccept transition here. 
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4.   Lost Packet Test 

The Tl machine is responsible for sending the data packets. Within state 1, Tl takes 

packets from the out buffer and sends them to Rl. To simulate the loss of a packet, Tl was 

modified, for purposes of this test only, to skip a packet during the connection and send the 

next one in the buffer instead. 

This condition caused the receiver, in mode 2, to notify the transmitter, via the R3 

Rjtate packet, of the missing data packet. The transmitter then performed a retransmit on 

the 'lost' packet. 

With the Tl machine modified to skip a packet, connections in all three modes were 

made. This modification enabled the retransmit transitions to be tested in Tl and confirmed 

the receiver's ability to notify the transmitter about 'lost' packets. 

5. Duplicate Packet Test 

In order to test the receiver's ability to recognize and handle duplicate data packets, 

Tl was modified to send one packet twice. This test run enabled the testing of the 

transitions buffer!a and buffer2a in machine Rl which correspond to finding duplicate 

packets. 

To test the T2's duplicate packet transition, discard], it was necessary to 

temporarily modify R3 to have it send another connection ack packet. The transition 

discard.2, in T2, was tested by having R3 send the same data ack packet twice. 

6. Testing Timeout 

R3 will only execute a timeout!, disc and confirm if transmitter control packets are 

not received for a relatively long time. To make this happen required making a temporary 

modification to T3 to preclude it from sending T_state packets and to cause it to sleep 

periodically for a few seconds. These changes to T3 caused R3 to execute all three of these 

transitions after performing 14 timeouts, in fact, R3 executed every transition except finish 

under this test condition. 
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7.   Silent Receiver Test 

To test how the transmitter would respond if the receiver failed to answer a 

connection request, the transmitter was started without starting the receiver. This condition 

was exercised for all three modes, causing the transmitter to attempt connection three times 

before aborting. This test case exercised the clock, ok, timeout, quit and retry turnstones in 

T2 and the fail and disc transition in T4. 

D.     GENERAL CONCEPTS 

In addition to verifying individual transitions, the order in which they occur must 

be examined. We must ensure no states are skipped, that is, the end state of one transition 

must be the start state for the next transition. We also must insure all machines return to the 

start state, state 0, upon connection completion. 

We may think of every pair of states connected by a transition to be a test case. By 

splitting the conditional predicates, in those transitions which have them, and creating new 

transitions with explicit predicates, we derive a complete set of acceptable, within 

specification, behavior. Verifying that every possible transition for a given machine is 

made according to specification, along with ensuring no unspecified transitions occur and 

determining the machine ends at state 0, constitutes a certification for the implementation 

of that machine. 

E.     THE TRANSMITTERS 

The transmitters were tested initially, as described above, by transmitting a small 

file in each of the three modes. After analyzing the results, assorted special test cases were 

performed to test those transitions not covered by the 'normal' tests. 

The normal machine configuration results are listed under the ModeO, Model, and 

Mode2 columns. Machines Tl and T3 were fully exercised by the standard tests. Machines 

T2 and T4 required the additional special tests in order to exercise all their transitions. 

These results are grouped together under the Special column and referenced by with respect 

to which one was used to produce what results. 
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The results are listed as either passed, failed, or N/T for not taken. Passed indicates 

the machine executed the transition according to the requirements of the specification. 

Failed indicates some aspect of the transition was not accomplished as required. Each 

failure is discussed with respect to why it occurred and what effect, if any, it had on the 

performance and/or service. 

1.   Machine Tl 

The Tl machine executed all tested transitions according to the design 

specifications, see Table 3. The machine demonstrated successfully the full cycle of state 

transitions ending back in the start state as required without making any unspecified 

transitions. The transition retransmit! was not tested due to an inability to have the machine 

reach a point where the retrans count exceeded the block size. Retransmission of packets 

was performed using the retransmit! transition in mode 2, and did not require any special 

test runs. 

Se Si Transition ModeO Mode 1 Mode 2 

0 1 start passed passed passed 

1 retransmit 1 N/T N/T N/T 

1 retransmit N/T N/T passed 

1 transmit_blkl passed N/T N/T 

1 transmit_blk2 N/T passed N/T 

1 transmit_blk3 N/T NAT passed 

2 blk_completed N/T passed N/T 

2 3 fiow_chkl N/T passed N/T 

2 3 flow_chk2 N/T N/T passed 

2 1 no_flow passed N/T N/T 

3 1 no_err N/T passed N/T 

Table 3: Tl Test Results 
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Se Si Transition ModeO Mode 1 Mode 2 

3 1 err_chk N/T N/T passed 

1 0 finish passed passed passed 

Table 3: Tl Test Results 

2.   Machine T2 

T2 failed to meet the specification for five transitions: nojlow, err_chk, no err, 

discard!, and discard!, see Table 4. The failures in each were the result of failing to 

dequeue a packet as an action. An examination of the implementation revealed that the 

dequeuing of packets was actually performed in the rcv_state transition, which leads to 

each of the others. This action was actually more efficient since it had to be done in each 

of the subsequent transitions regardless of which one was finally taken and did not 

adversely affect the machine's ability to provide the user service. 

In all test cases, T2 correctly returned to the starting state at the termination of the 

connection. 

The special case tests included the Connection Interruption Test (see page 33)1, the 

Refused Connection Test (see page 33)2, the Duplicate Packet Test (see page 34)3, and the 

Silent Receiver Test (see page 35)4. 

Si Se Transition ModeO Model Mode2 Special 

0 1 request passed passed passed passed1,2'3,4 

1 2 accept passed passed passed passed1,3 

1 0 unaccept N/T N/T N/T passed2 

1 6 clock N/T N/T N/T passed4 

6 1 ok N/T N/T N/T passed4 

6 7 timeout N/T N/T N/T passed4 

Table 4: T2 Test Results 
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Si Se Transition ModeO Model Mode2 Special 

7 1 retry N/T N/T N/r passed4 

7 0 quit N/T N/T N/T passed4 

2 0 finish 1 N/T passed N/r passed3 

2 0 finish2 passed N/T N/T N/T 
2 0 finish3 N/T N/T passed N/T 
2 0 abort N/T N/T N/T passed1 

2 3 rcv_state N/T N/T passed passed1'3 

3 2 discard 1 N/T N/T N/T failed3 

3 2 discard2 N/T N/T N/T failed3 

3 4 update passed N/T passed passed1'3 

4 2 no_flow failed N/T N/T failed1'3 

4 5 flow_chkl N/T failed N/r failed1-3 

4 5 flow_chk2 N/T N/T passed passed1'3 

5 2 no_err N/T N/T N/T failed 
5 2 err_chk N/T failed failed failed 

3.   Machine T3 

Table 4: T2 Test Results 

Machine T3 performed all transitions in accordance with the design specification 

and demonstrated correct behavior with respect to executing no unspecified transitions and 

returning to the start state at the end of the connection, see Table 5. None of the special test 

conditions were needed to exercise all the specified transitions. 

Si Se Transition ModeO Model Mode2 

0 1 start passed passed passed 

Table 5: T3 Test Results 
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Si Se Transition ModeO Model Mode2 

1 2 clock passed passed passed 

2 3 no_data passed passed passed 

3 1 delay passed passed passed 

3 4 timeout 1 N/T NT passed 

3 4 timeout2 passed passed passed 

2 4 data passed passed passed 

4 1 no_disc passed passed N/T 

4 5 disc N/T N/T passed 

5 0 confirm N/T N/T passed 

1 0 finish passed passed NT 

Table 5: T3 Test Results 

4.   Machine T4 

Machine T4 executed all transitions according to specification, see Table 6, with 

one minor discrepancy noted below. At the end of each connection, the machine correctly 

returned to the start state. 

A condition arose during the transmission of a large file which indicated the 

possible need for an additional transition definition. While the out buffer has room, the 

machine writes packets into it, the write transition in state 2. If the out buffer is full, the 

machine loops in state 2 waiting for room to open up. This out buffer full condition caused 

an apparent failure in the write transition a few times during the transmission of a large file 

when, in fact, an undefined transition was occurring. Adding a wait_buf transition from 

state 2 to state 2 would account for this situation and would better define the protocol. 
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The special tests included the Connection Interruption Test (see page 33)\ the 

Refused Connection Test (see page 33)2, and the Silent Receiver Test (see page 35)3. 

Si Se Transition ModeO Model Mode2 Special 

0 1 signal passed passed passed passed2'3 

1 0 fail N/T N/T N/T passed3 

1 0 unaccept N/T N/T N/T passed2 

1 2 start passed passed passed passed2'3 

2 2 write passed passed passed N/T 
2 3 finish passed passed passed N/T 
3 0 confirm N/T passed passed N/T 
2 0 disc N/T N/T N/T passed1 

Table 6: T4 Test Results 

F.     RECEIVERS 

The receivers were tested in much the same way as the transmitters. The first set of 

tests involved sending a small file in each of the three modes. 

As with the transmitters, the normal machine configuration results are listed under 

the ModeO, Model, and Mode2 columns. All machines required some additional special 

test connections in order to exercise all their transitions. These results are grouped together 

under the Special column and referenced by with respect to which one was used to produce 

what results. 

The results are listed as either passed, failed, N/A for not applicable, or N/7 for not 

taken. 

1.   Machine Rl 

The Rl machine made no unspecified transitions and correctly returned to the start 

state upon completion of each connection but failed all but the start and receive transitions. 
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The no_buf, bufferla, bufferlb, buffer2a, and buffer2b transitions all failed to meet the 

action requirement of dequeuing a packet. The dequeuing of packets was performed as an 

action in the receive transition which proceeds all five listed failures. This change is 

actually a more efficient way to perform the dequeuing of packets and does not adversely 

affect the ability of the receiver to provide service to the user. 

In all tests, the machine performed the finish transition while the INBUF still 

contained packets, see Table 7. As noted in [12], this was an error in the specification. Since 

Rl has the duty of servicing the T_chan, it makes more sense to enable the finish transition 

when the T_chan is empty and R_active is false, which is exactly what was done in the 

implementation. Although the transition was reported as a failure, due to a predicate 

mismatch, the machine did return to state 0 from state 1 as required. 

The special test performed specifically to check bufferlb and bufferlb was the 

Duplicate Packet Test (see page 34). 

Si Se Transition ModeO Model Mode2 Special 

0 1 start passed passed passed passed 

1 0 finish failed failed failed failed 

1 2 receive passed passed passed N/T 

2 no_buf N/T failed N/T N/T 

2 bufferla failed N/T N/T failed 

2 bufferlb N/T N/T N/T failed 

2 buffer2a N/T N/T failed failed 

2 buffer2b N/T N/T N/T failed 

Table 7: Rl Test Results 

41 



2.   Machine R2 

Analysis of the R2 trace data confirmed the machine made no unspecified 

transitions and finished in the start state as required. Transitions made which did not follow 

the specification are noted as are some which did not occur at all. 

Discard3 was not actually implemented in the code. The author Wan, [12], treated 

T_state packets, as well as Conn_disc packets, as out-of-band and thus they were never 

queued in the T_chan and did not need to be dequeued. This implementation change was 

correctly identified by the testing process when the failure to correctly execute discard3 

was discovered, see Table 8. 

Start! and update were both dependant on having a Tjtate packet in the T chan 

which did not occur for the same reason: it is out-of-band. Since T_chan never contains a 

T_state packet, start2 never appears to occur. 

By examining the actions taken when the verification program reported the update 

transition failed the predicate condition, it was discovered that the correct action of setting 

high to equal the T_chan(front).seq was actually accomplished. We may consider this a 

success as far as performing the actions are concerned and conclude proper operation was 

maintained. 

The Tjtate data was still read and used and the machine appeared to operate as 

required although it did deviate from the given design specification. 

The special test performed to check buffer lb and bufferlb was the Duplicate Packet 

Test (see page 34) 

Si Se Transition ModeO Model Mode2 Special 

0 1 ack passed passed passed passed 

1 3 clock N/T N/T N/T passed 

3 1 ok N/T passed N/T passed 

Table 8: R2 Test Results 

42 



Si Se Transition ModeO Model Mode2 Special 

3 0 timeout N/T N/T N/T passed 

1 2 start1 passed passed passed passed 

1 2 start2 N/T N/T N/T N/T 

1 2 start3 N/T N/T N/T passed 

2 0 finishl passed N/T N/T passed 

2 0 finish2 N/T passed passed passed 

2 2 update N/T N/T N/T failed 

2 2 discard 1 N/T N/T N/T passed 

2 2 discard2 N/T N/T N/T passed 

2 2 discard3 failed N/T failed passed 

1 1 lost_ack N/T N/T NA1 passed 

Table 8: R2 Test Results 

3.   Machine R3 

All transitions in machine R3 were performed in accordance with the specification, 

no unspecified transitions were made, and all connections were terminated with the 

machine back in the start state, see Table 9. The conditions of the special test are detailed 

in Testing Timeout (see page 34). 

Si Se Transition ModeO Model Mode2 Special 

0 1 start passed passed passed passed 

1 2 clock passed passed passed passed 

2 3 no_data N/T sassed passed passed 

3 1 delay N/T passed passed passed 

3 4 timeout 1 N/T           ] jassed passed passed 

Table 9: R3 Test Results 
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Si Se Transition ModeO Model Mode2 Special 

3 4 timeout2 N/T N/r N/T passed 
2 4 data passed passed passed passed 
4 1 no_disc passed passed passed passed 
4 5 disc N/T N/T NT passed 
5 0 confirm N/T N/T N^ passed 
1 0 finish passed passed passed N/T 

Table 9: R3 Test Results 

4.   Machine R4 

Machine R4 does not operate in mode 0. All transitions in machine R4 were made 

in compliance with the specification, see Table 10, and the machine returned to the start 

state at the end of each connection having taken only specified transitions. The wait 

transition was not tested due to an inability to satisfy the predicate conditions. Regardless 

of the modifications to the various machines, the wait condition was never satisfied. 

The special test performed to check disc was the Lost Packet Test (see page 34). 

Si Se Transition ModeO Mode 1 Mode 2 Special 
0 1 start N/A passed passed passed 
1 0 finish N/A N/T passed NfT 
1 0 disc N/A N/T N/T passed 
1 2 accept1 N/A passed N/T N/T 
1 2 accept2 N/A N/T passed passed 
2 3 no_err N/A N/T N/T passed 
3 1 wait N/A N/T N/T N/T 
3 1        retrieve N/A 

  
passed N/T N/T 

Table 10: R4 Test Results 
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Si Se Transition ModeO Mode 1 Mode 2 Special 

2 1 err_chk N/A N/T passed passed 

Table 10: R4 Test Results 

G.    FINAL OBSERVATIONS 

With the exception of the two failures of the transmitter to find the running receiver, 

the implementation appeared to perform quite well. The only comment about the protocol 

in general which bears mentioning concerns the parallel execution design. There is no 

question that parallel processing affords a great potential for reducing packet processing 

overhead with respect to time. Without a multiple processor hardware configuration 

however, this advantage is not only lost, but overhead is added due to the requirement for 

context switching. And of course, there is the non deterministic processor scheduling 

problem as well. Final conclusions and topics for further research follow in the next 

chapter. 
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V. CONCLUSIONS AND TOPICS FOR FUTURE RESEARCH 

A.     IMPLEMENTATION CONFORMANCE VERIFICATION 

The goal of this work was to take a formal specification and an actual 

implementation and perform an examination to determine the implementation's 

compliance with the specification. The formal specification was presented, the methods for 

producing the set of test sequences from the specification and for generating an 

implementation run time trace file were presented, and the methodology for performing the 

comparison tests was explained. Finally, the results of the tests were presented along with 

the findings. 

1.   Testing Methods and Problems 

a. Errors 

Ideally, the testing of software should be as uninvasive as possible. 

Modification of the original source code opens the tester up for a multitude of potential 

problems due to the possible introduction of errors. 

How does a tester distinguish the source of apparent errors? Is the error due 

to the original implementation, the modifications made to allow for the test, or perhaps an 

interaction between the two? These very problems arose during this research. The code 

inserted to write out the state variables incorrectly reported some values in come cases. A 

careful analysis of the added code was required to identify the apparent failure of the 

implementation as a misreported state variable value. 

b. Comparisons 

The problem of performing comparisons lies in matching the requirements 

variables to the implementation output variables. The approach taken in this work was to 

match the two sets of data positionally, that is, in the actual order they are found in the two 

data files. 
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Another possible approach would be to match the variable names. This 

would require the tester to insure exact variable name matches. This complicates the 

comparison process, requiring the comparison program to perform the additional task of 

processing the entire list of requirements variable names for each test variable in every line 

of output. 

c. Complete Testing 

The goal of any test is to verify every possible case. Two transitions out of 

a total of 96 were not tested due to an inability to cause the target machines to make them. 

A number of transitions only occur when an error is encountered, either due to a lost or 

unexpected packet or due to a connection failure. Simulating these cases required 

modifying some of the machines to either purposely produce bad packets or to loose 

packets entirely. Additionally, manually interrupting the execution of a set of machines 

during an actual connection was done to simulate a connection failure. 

B.     CONCLUSIONS 

The implementations varied slightly from the formal specification. An examination 

of the modifications made indicates the variations do not alter the intended behavior of the 

machines from an outside or blackbox perspective. 

Formal specifications rarely anticipate all possible actual implementation 

situations. Methods for optimizing performance and providing for unanticipated situations 

may require that the formal specification be amended. The software development cycle 

almost always requires the modification of specifications. The variations from the given 

specification identified in this implementation examination represent just such a situation. 
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C.    TOPICS FOR FOLLOW ON WORK 

1.   A Formal Approach to Implementing a Formal Specification 

Given a formal specification in the form of SCM, a formal approach to generating 

the implementation should be used. The specification describes the protocol's behavior 

using a FSM. A structured approach to writing the implementation using case statements 

corresponding to the given FSM states would greatly enhance the readability and 

understandability of the code and make it much easier to test. Additionally, the variable 

names given in the specification should match exactly. 

The implementation would consist of a set of blocks. Each state, represented as a 

case, would contain conditional statements corresponding to each possible transition from 

that state. The conditions for executing a transition would be taken directly from the 

specification's predicate requirements. The body of these transition statements would then 

contain the actions required by the specification followed by an update of the case variable 

to reflect the next state to be entered. 

The test bench program, proposed above, would be able to trace the state transitions 

by monitoring the value of the case state variable. A change in the value would be a cue to 

sample the machine's state variables and write them to the trace file along with the data on 

the initial state and end state for the transition. 

The implementations examined here were, to some degree, designed in this fashion. 

With minor modifications, the existing code could be modified to follow the proposed 

style. 

2.   Examining an Implementation Unintrusively 

To externally manipulate and examine an implementation would be preferable. 

Having a test bench on which to perform the test runs would be ideal. A master program to 

act as a wrapper through which all machine input and output would have to pass would 

facilitate both the development and the testing processes. This master program would also 

be the place to embed the test run output generation program. 

49 



Examining and recording the values of internal state variables during a program's 

execution from the outside would eliminate the problem of introducing errors into the 

implementation. Additionally, it would allow the tester more freedom to examine different 

variations of the implementation. The method of modifying the code of the implementation 

requires a great deal of time on the part of the tester to read and understand the code being 

tested as well as to find the appropriate places to insert the test code to write out the 

machine's state and variable values. 
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APPENDIX. RESULTS ANALYSIS GENERATING PROGRAM 

A.   SNRTEST.A 

with text_io, Test_Snr; 
use texMo, Test_Snr; 

procedure SNRTest is 

package integerjnout is new integer_io(integer); 
use integerjnout; 

subtype name is string(1..2); 

myfiles 
instring 
instringjen 
Number_to_test 
indx 
snames 

begin 

: array(0..9) of file_name_record_type; 
:string(1..30):= (others =>"); 
: integer:=1; 
: integer := 1; 
: integer := 1; 

: array(0..7) of name; 

text_io.put_line("What machines are we testing?"); 
text_io.get_line(instring, instringjen); 

for I in 0..7 loop 
for II in 1..2 loop 

names(l)(ll) := instring(lndx); 
indx := indx + 1; 

end loop; 
indx := indx + 1; 
exit when instring(indx) = ''; 
Number_to_test := Numberjojest + 1; 

end loop; 

for J in O..Number_to_test-1 loop 
for I in 1..2 loop 

myfiles(J).File1(l) 
myfiles(J).File2(l) 
myfiles(J).File3(l) 

end loop; 
end loop; 

= names(J)(l) 
= names(J)(l) 
= names(J)(l) 

text_io.put_line("What subdirectory contains the test output?"); 
text_io.get_Jine(instring, instringjen); 

for J in O..NumberJoJest loop 
for I in 1 ..instringjen loop 

exit when instring(l) = ' '; 
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myfiles(J).path(l) := instring(l); 
end loop; 

end loop; 

for I in O..Number_to_test-1 loop 
tgparse(myfiles(i)); 

end loop; 

end SNRTest; 

B.   TESTPACK.A 

-- Thesis: Testing the SNR Transport Protocol 

- Captain Bob Grier 

-- Package Specification and Body for Test_Snr' 

- Purpose: Automated comparison of protocol specification and test run 
results. 

-- Description: The package takes a record containing the names of 
specification file: *res.txt, the test output file : *.out 
and the name of the file to write the results of the 
comparison to: "test.rst. 

The specification is read and each unique transition is saved 
into a data structure containing the start and end states as well 
as the predicate and action values required. 

The test output file is then read one line at a time. The start 
and end states are compared against the saved specification records 
until a match is found. The predicates are first checked to see if 
they match, a failure to match generates an error message indicating 
the predicates were not able to be matched and lists all transitions 
which start and end the same as the test transition. The user can 
check which predicate fields are not correct by comparing the actual 
list of predicates with the expected predicates. 

Next, the actions are checked. A failure to match all the actions 
results in an error message listing which action failed to match as 
well as what was found and what was expected. The test data and the 
transition are listed to allow for further comparison. 

Matches are listed showing the start and end states and the name 
of the transition taken. 

with textJO; 
use textJO; 

package Test_Snr is 
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type file_name_record_type is record 
Filel :string(1..13) := " res.txt   "; 
File2 :string(1„13) := " .out      "; 
File3 : string(1..13) := " test.rst   "; 
Path : string(1..30) := (others =>''); 

end record; 

procedure tgparse (myjiles: in file_name_record_type); 

end Test_Snr; 

package body Test_Snr is 

procedure tgparse(my_files: in fiie_name_record_type) is 

test_state_number: constant integer := 35; 

subtype result is string(1..15); 
type the_results is array(1..35) of result; 

type testgen_record_type is record 
Si : integer := -1 
Se : integer := -1 
T_name :string(1..15) 
values : the_results; 
times_taken : integer := 0; 

end record; 

test_states 

temp, 
names 

ajine 
snipit 
t_name 
This_char 
full_in_name, 
full_out_name 

a_line_len 
dummy 
how_many, 
Si, 
sm_index, 
Se, 
indx, 
ti, 
ri, 
bar_count 
predicate_count 

: array(1..Test_state_number) of testgen_record_type; 

: the_results := (others =>(others=>'')); 

: string(1..300) := (others => ''); 
:string(1..10):= (others =>"); 
:string(1..15); 
: character; 

:string(1..50) := (others =; 

: natural; 
: positive; 

: integer := 1; 
: integer := -2; 
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a_states_match        : array(1 ..6) of integer; 

predicate : Boolean := True; 

-- FILES 
testgenjile, 
outjile, 
TEST_Ofile : Filejype; 

package integeMnout is new integerjo(integer); 
use integeMnout; 

-- FUNCTION: LENGTH - finds the length of a string 

function length(mystring: in string) return integer is 
len : integer:=0; 

begin 
for I in 1..100 loop 

exit when mystring(i) = ''; 
len := len + 1; 

end loop; 
return len; 

end length; 

- PROCEDURE: OPEN_THE_FILE - opens the input Wes 

PTuC
c
ednTc

0PEN-THE-FILE(FILE : in out F"-E_TYPE; File name: in string) is 
THE_FILE ; FILE_TYPE; 
FILE_NAME_LENGTH      : INTEGER :=0; 

begin 

FILE_NAME_LENGTH := length(File_name)- 

S,N!F;!lrE'M0DE=>IN-FILE'NAME=>F^E-NAME(1--FII-E NAME LENGTH))- NEW_LINE; ~ ~ "' 

end OPEN_THE_FILE; 

- PROCEDURE: OPEN_OUT_FILE - opens the output file 

procedure OPEN_OUT_FILE(FILE : in out FILE_TYPE; File name: in string) is 
THE_FILE : FILE_TYPE" 
FILE_NAME_LENGTH      : INTEGER :=0; 

begin 
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FILE_NAME_LENGTH := length(File_name); 
create(FILE, NAME=>FILE_NAME(1 ..FILE_NAME_LENGTH)); 
NEW_LINE; 

end OPEN_out_FILE; 

- PROCEDURE: print_names - writes out the predicate and action names 

procedure print_names is 

begin 
for II in 3..how_many+2 loop 

put(out_file,names(ll)(1..10)); 
put(out_file,T); 

end loop; 
new_line(out_file); 

end print_names; 

-- PROCEDURE: printjransition - prints out the given transition 

procedure printjransition (Transition: in out integer) is 

begin 
for II in 1..how_many loop 

put(out_file,test_states(Transition).values(ll)(1..10)); 
put(out_file,"|"); 

end loop; , 
new_line(out_file); 

end print_transition; 

-- PROCEDURE: Report_Match -- prints out the match condition 

procedure Report_Match(Transition: in integer) is 

begin 

test_states(Transition).times_taken := test_states(Transition).times_taken + 1; 
put(out_file,"match Si:"); 
put(out_file,Si,2); 
put(out_file,"Se:"); 
put(out_file,Se,2); 
put(out_file," Transition:"); 
put(out_file,test_states(Transition).T_name); 
new_line(out_file); 
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end Report_Match; 

-- PROCEDURE: Report_error - reports falure to match any transitions 

procedure Report_error is - this is the no predicate match case 

begin 

new_Line(out_file); 
put(out_file,"ERROR-Predicate failed to match transition from Si:"); 
put(out_file,test_states(a_states_match(1 )).Si,2); 
put(out_file,"toSe:"); 
put(out_file,test_states(a_states_match(1)).Se,2); 
newjine(outjile); 
print_names; 

for II in 2..how_many+1 loop 
put(out_file,temp(ll)(1 ..10)); 
put(out_file,T); 

end loop; 
new_line(out_file); 
put(out_file,"Should have matched:"); 
new_line(out_file); 
for II in 1..6 loop 

exit when a_states_match(ll) = -1; 
print_transition(a_states_match(ll)); 

end loop; 
new_Line(out_file); 

end report_error; 

-- PROCEDURE: Report_error - reports falure to match actions when predicate 
is matched 

procedure Report_error (Transition: in integer; 
Predicate: in integer) is 

trans_out    : integer := Transition; 

begin 
new_line(out_file); 
put(out_file,"ERROR-Transition ->"); 
put(out_file,test_states(Transition).T_name); 
put(out_file,"ACTION ->"); 
put(out_file,names(Predicate+2)(1 ..10)); 
putfoutjile/failed to match."); 
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put(out_file," Found: "); 
put(out_file,temp(Predicate+1)); 
put(out_file," Expected:"); 
put(out_file,test_states(Transition).values(Predicate)); 

new_line(out_file); 
print_names; 
for II in 2..how_many+1 loop 

put(out_file,temp(ll)(1..10)); 
put(out_file,T); 

end loop; 
new_line(out_file); 
print_transition(trans_out); 
new_line(out_file); 

end report_error; 

- FUNCTION: Match„predicates - attempts to match the predicates 

function Match_predicates(Transition: integer) return boolean is 

DC1 : result := "DC "; 

begin 

for K in 1 ..predicate_count loop 
if test_states(Transition).values(k) /= DC1 then 

if test_states(Transition).values(k) /= temp(k+1) then 
return False; 

end if;      - end of the predicate/action missmatch condition 
end if;     -- end of the check all non-don't care values 

end loop;   -- end of "check all predicates and actions" loop 
return True; 

end Match „predicates; 

- FUNCTION: Match_actions - attempts to match the actions 

function Match_actions(Transition: integer) return boolean is 

DC2 : result :="- "; 
outjrans        : integer := Transition; 

begin 

for K in predicate_count+1 ..how_many loop 
if test_states(Transition).values(k) /= DC2 then 

if test_states(Transition).values(k) /= temp(k+1) then 

57 



Report_error(out_trans,k); 
return False; 

end if;      - end of the predicate/action missmatch condition 
end if;     - end of the check all non-don't care values 

end loop;   -- end of "check all predicates and actions" loop 
return True; 

end Match_actions; 

-- Main body 

begin 
open_the_file(testgen_file, my_files.file1); 

get(testgen_file, this_char); 

while This_char /= '-' loop    - skip forward to data lines 
get(testgen_file, this_char); 
skipjine(testgenjile); 

end loop; 

get_line(testgenjile, ajine, ajinejen); 

ti:=1; 
ri := 1 ; 

for I in 1 ..ajinejen loop - find the predicates and actions 
if ajine(i) /= '' and ajine(i) /= T and ajine(i) /= - then 
names(ti)(ri) := ajine(i); 
ri := ri + 1; 

elsif ajine(i) = '|' and ajine(i-l) /= «*• then -- ignore the |**| 
if predicate then 

predicate_count := predicate_count + 1; 
end if; 
ri:=1; 
ti := ti + 1; 

end if; 
if ajine(i) = '*' then 
predicate := false; 

end if; 
end loop; 

put("prediate count is:"); put(predicate_count, 3); newjine; 
skipjine(testgenjile); 

While not End_ofJile(testgenJile) loop 

getjine(testgenjile, ajine, ajinejen); 

- FIRST GET THE STATE NUMBERS - 
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indx := 1; 
T_name:= (others =>''); 

while ajine(indx) /= '|' loop -- read until the first bar '|' 
t_name(indx) := ajine(indx); - Si is after this bar 
indx := indx + 1; 

end loop; 

for I in 1..10 loop - put the next 10 characters into snipit 
snipit(i) :=a_line(indx+i); 

end loop; 
integer_inout.get(snipit, Si, dummy); - read the start state as an integer 

for I in 1 ..3 loop - pick the end state off the end 
if a_line(i+a_line_len-3) = '|' then 

snipit(i) :=''; 
else 

snipit(i) := a_line(i+a_line_len-3); 
end if; 

end loop; 

integer_inout.get(snipit, Se, dummy); - read the end state as an integer 

- reset values 

ti := 1; 
ri := 1; 
bar_count := 0; 
temp := (others =>(others => '')); 

for I in 1 ..ajinejen loop - find the predicates and actions 
if a_line(i) /= '' and a_line(i) /= T and a_line(i) /= '*' then 
temp(ti)(ri) := a_line(i); 
ri := ri + 1; 

elsif a_line(i) = '|' and a_line(i-1) /= '*' then -- ignore the |**| 
ri := 1; 
ti := ti + 1; 

end if; 

if a_line(i) = T then 
bar_count := bar_count + 1 ; 

end if; 

end loop; 

- attempt to insert into the Test_state array 
- bar count minus 4 is the actual number of predicates and actions 

how_many := bar_count - 4; 
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for I in 1 ..Test_State_number loop        -- insert new data loop 
if test_states(i).T_name = T_name then   -- check for repeats 
exit; 

elsif test_states(i).Si = -1 then       -- if we haven't seen this one... 
test_states(i).T_name := t_name;      - add this one onto the list 
for j in 1 ..how_many loop -- add the states 
test_states(i).values(j) := temp(j+2); -- don't want the first two fields 

end loop; 
test_states(i).Si := Si; -- add the Si info 
test_states(i).Se := Se; - add the Se info 
exit; 

end if; 
end loop;    - insert new data loop 

end loop; - end of reading the testgen file 

-- read and check the test output against the testgen stuff 

indx := 1; - add the path if any 
for I in 1..30 loop 

exit when myJiles.Path(l) = ''; 
full_in_name(indx) := myjiles.path(l); 
full_out_name(indx) := myjiles.path(l); 
indx := indx + 1; 

end loop; 

for I in 1 ..13 loop 
full_in_name(indx) := my_files.file2(l); 
full_out_name(indx) := my_files.file3(l); 
indx := indx + 1; 

end loop; 

open_the_file(test_ofile, full_in_name); —my_files.file2 
open_out_file(out_file, full_out_name); -- my_files.file3 
skip_line(test_ofile); 

put(out_file,*THE MODE IS"); 
put(out_file,my_files.Path(2)); 
new_line(out_file,2); 
while not End_of_file(test_ofile) loop 
get_line(test_ofile, ajine, ajinejen); 

integer_inout.get(a_line, Si, dummy); -- get Si 

for I in 1..3 loop 
if a_line(i+a_line_len-3) = '|' then 
snipit(i) := ''; 

else 
snipit(i) := a_line(i+a_lineJen-3); 
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end if; 
end loop; 

integer_inout.get(snipit, Se, dummy); -- get Se 

ti:=1; 
ri:=1; 
bar_count := 0; 
temp := (others=>(others=>'')); 

for I in 1 ..ajinejen loop - find the predicates and actions 
if a_line(i) /= '' and then 

a_line(i) /= '|' and then 
a_line(i) /= '*' then 

temp(ti)(ri) := a_line(i); 
ri := ri + 1; 

els'rf a_line(i) = '[ and then a_line(i-1) /= '*' then 
ri:=1; 
ti:=ti + 1; 

end if; 

if a_line(i) = T then 
bar_count := bar_count + 1; 

end if; 

end loop; - end of parsing this line 

- the loading of the test stuff goes here A************************* 

sm_index := 1; 
a_states_match := (others=> -1); 

for I in 1..Test_State_number loop 

if test_states(i).Si = -1 then 
Report_Error; 
exit; 

end if; 

if test_states(i).Si = Si and then test_states(i).Se = Se then 
a_states_match(sm_index):= I; 
sm_index := sm_index +1; 
if Match_predicates(l) then 

if Match_actions(l) then 
Report_match(l); 
exit; 

else 
exit; 

end if; 
end if: 
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end if; 

end loop; - end of the "check all the test states" loop 

end loop; - read the test output file 

-- echo out the specifiations 
newjine(outjile); 
put(out_file,"# Taken Si Se   Name       "); 
for II in 3..how_many+2 loop 

put(out_file,names(ll)(1 ..10)); put(out_file,"|"); 
end loop; 
newjine(outjile); 

for I in 1..Test_State_numberloop 
exit when test_states(i).Si = -1; 
put(out_file,l,2); 
put(out_file,test_states(i).times_taken, 4); 
put(out_file,test_states(i).Si, 4); 
put(out_file,test_states(i).Se, 4); 
put(out_file," "); 

put(out_file,test_states(i).T_name(1..14)); 
for j in 1 ..how_many loop 

put(out_file,test_states(i).values(j)(1..10))- 
put(out_file,"|"); 

end loop; 
newjine(outjile); 

end loop; 

endtgparse; 

end Test Snr; 
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